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Abstract: We study scalar field theories on Poincaré invariant commutative nonasso-

ciative spacetimes. We compute the one-loop self-energy diagrams in the ordinary path

integral quantization scheme with Feynman’s prescription, and find that the Cutkosky rule

is satisfied. This property is in contrast with that of noncommutative field theory, since

it is known that noncommutative field theory with space/time noncommutativity violates

unitarity in the above standard scheme, and the quantization procedure will necessarily

become complicated to obtain a sensible Poincaré invariant noncommutative field theory.

We point out a peculiar feature of the non-locality in our nonassociative field theories,

which may explain the property of the unitarity distinct from noncommutative field theo-

ries. Thus commutative nonassociative field theories seem to contain physically interesting

field theories on deformed spacetimes.
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1. Introduction

Noncommutative spacetime is spacetime with noncommutative spacetime coordinates [1]-

[4]. Since there appears uncertainty in non-commuting directions, noncommutative space-

time can be considered as an interesting candidate for new notion of quantum spacetime.

Field theories on noncommutative spacetime are obtained from replacing commutative

C∗-algebras of functions with noncommutative algebras [5].

It is known that noncommutative field theories are related to string theory and quan-

tum gravity. In string theory, for example, noncommutative field theory is an effective

theory, which is obtained in the α′ → 0 limit of the open string theory with constant

background Bµν field [6]. In quantum gravity, for example, the effective dynamics of quan-

tum particles coupled to three-dimensional quantum gravity can be expressed in terms of

an effective noncommutative field theory which respects the principles of doubly special

relativity [7].

But some noncommutative field theories do not respect the principles of special rel-

ativity or quantum mechanics. The simplest example is the spacetime with the noncom-

mutativity [xµ, xν ] = iθµν , where θµν is a constant antisymmetric tensor. The field theory

on the noncommutative spacetime does not have the ordinary Lorentz symmetry except in

two-dimensions, since θµν is not Lorentz invariant1, while recent developments show that

noncommutative field theory has twisted Poincaré symmetry [8, 9]. It is not unitary in the

standard path integral quantization procedure with Feynman’s prescription, when it has

space/time noncommutativity [10]-[12]. In [10], this was shown by computing explicitly

1In two dimensions, θµν is proportional to εµν and is Lorentz invariant.
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the one-loop amplitudes and showing the violation of the Cutkosky rule2. Also it is known

that acausal effects occur, when it has space/time noncommutativity [15]. Moreover, it

has an unusual behavior, called UV-IR mixing, that the ultra-violet divergences appear in

the limit of vanishing external momenta [16]-[18].

Is it possible to construct field theories on deformed spacetime which preserve both

Lorentz symmetry and unitarity? Since Lorentz symmetry mixes space and time directions,

the known facts in the preceding paragraph suggest that it becomes necessarily complicated

for noncommutative spacetime. In this paper, we pursue the possibility of nonassociative

spacetime. In fact, nonassociativity is known to appear in open string theory with non-

constant background Bµν field [19]. It was also argued that the algebra of closed string

field theory should be commutative nonassociative [20]. There are also other discussions

on nonassociative theory [21, 22]. Especially in [23], they discussed commutative nonasso-

ciative gauge theory with Lorentz symmetry.

This paper is organized as follows. In the following section we study scalar φ3 field

theory obtained from the commutative nonassociative product,

φ(x) ∗ φ(x) = e−α(∂a+∂b)
2
φ(x+ a)φ(x+ b)|a=b=0,

where α is a constant nonassociative deformation parameter. This product is obviously

Poincaré invariant. Since this product contains an infinite number of space-time derivatives,

unitarity seems to be a non-trivial issue. We find that this field theory satisfies the Cutkosky

rule for the one-loop self-energy diagram.

In section 3 we replace the above commutative nonassociative product to avoid a

divergence in the amplitude. In fact the real part of the one-loop amplitude diverges

exponentially in Minkowski spacetime, when we adopt the above product. This divergence

is irrelevant to the discussions about the one-loop unitarity in section 2, but may harm the

significance of the field theory based on the above product. Thus we change the square

of momenta on the exponential to the forth power, and study the field theory based on

the new product. We check the one-loop Cutkosky rule to some orders of α, and find the

unitarity holds also in this case.

In section 4 we discuss scalar field theories obtained from Poincaré invariant commu-

tative associative algebras, and find that the couplings become constant in general. This

shows that non-trivial behaviors of scalar field theories can appear only when commuta-

tivity or associativity of algebras is lost.

The final section is devoted to discussions and comments. We make an observation

concerning the reason why our nonassociative field theories satisfy the unitarity relation

from the viewpoint of a qualitative difference in non-locality between noncommutative field

theories and our commutative nonassociative field theories.

2In [13, 14], however, they defined a unitary S-matrix of space/time noncommutative field theory with

proper time-ordering. The amplitudes in their schemes are different from those in the standard path integral

scheme.
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2. Nonassociative φ3 theory: quadratic case

Noncommutative field theories can be constructed from replacing the usual multiplication

of fields in the Lagrangian with Moyal product,

φ(x) ∗ φ(x) = e
i
2
θµν ∂

∂aµ
∂
∂bν φ(x+ a)φ(x+ b)|a=b=0. (2.1)

Then the spacetime noncommutativity is given by

[xµ, xν ] = xµ ∗ xν − xν ∗ xµ = iθµν . (2.2)

This spacetime noncommutativity breaks Lorentz symmetry except in two dimensions.

Moreover field theory with space/time noncommutativity (θ0i 6= 0) is not unitary in the

standard path integral scheme [10]-[12].

The purpose of this paper is to pursue unitary field theories on deformed spacetimes

with Lorentz symmetry. As candidates, we are going to construct scalar field theories on

Poincaré invariant commutative nonassociative spacetimes and check the one-loop unitar-

ity.

Let us first define the following commutative nonassociative star product,

φ(x) ∗ φ(x) = e−α(∂a+∂b)
2
φ(x+ a)φ(x+ b)|a=b=0, (2.3)

where α is a constant nonassociative deformation parameter. This parameter is taken to

be real for the tree level unitarity to hold.

For the plane waves, the product (2.3) becomes

eipx ∗ eiqx = eα(p+q)2
ei(p+q)x. (2.4)

This is obviously Poincaré invariant, since it preserves the Lorentz symmetry and the

momentum conservation. One can easily check that this product is commutative but

nonassociative,

eip1x ∗ eip2x = eip2x ∗ eip1x,

(eip1x ∗ eip2x) ∗ eip3x 6= eip1x ∗ (eip2x ∗ eip3x). (2.5)

Field theories based on the product3 will have features quite different from the noncom-

mutative field theory based on the Moyal product.

3We adopt the above product (2.4), because this is the simplest non-trivial choice if we impose the

product to have the exponential form and Poincaré invariance. You may hit upon another choice,

eipx ∗ eiqx = eαp·qei(p+q)x.

But this product is commutative associative, and field theory based on it is trivial in the sense discussed in

section 4. In fact, one can multiply the right hand side of (2.4) by any commutative associative factor with

no change of field theory (See section 4 for more details.). Therefore the expression (2.4) is essentially the

general case with the form of the exponential of a quadratic function of momenta. The peculiar choice (2.4)

is taken for the simplest choice of the normalization of the scalar field.
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Figure 1: Propagator

Figure 2: Three-point vertex

Let us construct φ3 scalar field theory based on the above commutative nonassociative

product. The action is defined by

S =

∫
dDx

[
1

2
∂µφ(x) ∗ ∂µφ(x)− 1

2
m2φ(x) ∗ φ(x)− g

3!
φ(x) ∗ (φ(x) ∗ φ(x))

]
. (2.6)

The term (φ ∗ φ) ∗ φ is not necessary, because (φ ∗ φ) ∗ φ = φ ∗ (φ ∗ φ) holds from the

commutativity.

In this paper, we employ the standard path integral quantization procedure for the

action (2.6). To find the Feynman rules, let us consider the Fourier transform of the field

φ(x),

φ(x) =

∫

p
φ̃(p) eipx, (2.7)

where
∫
p =

∫
dDp/(2π)D . The scalar field φ(x) is assumed to be real, and therefore

φ̃(p)∗ = φ̃(−p). Substituting (2.7) into the action, we obtain

S =

∫

p

1

2
(p2 −m2)φ̃(p)φ̃(−p)

− g

3!

∫

p

∫

q

∫

k
eα(q+k)2

eα(p+(q+k))2
φ̃(p)φ̃(q)φ̃(k)(2π)DδD(p+ q + k)

=

∫

p

1

2
(p2 −m2)φ̃(p)φ̃(−p)− g

3!

∫

p

∫

q
eαp

2
φ̃(p)φ̃(q)φ̃(−p− q). (2.8)

One can read Feynman rules from (2.8). The Feynman rule for the propagator is given by

the usual one as in figure 1. Averaging over the orderings of the legs, the Feynman rule of

the three-point vertex is given by figure 2. Formal discussions on the quantization of the

system respecting the structure of the star product will be given below.

Generating functional is defined by

W [J ] =

∫
[dφ] exp

{
i

∫
dDx

(
1

2
∂µφ ∗ ∂µφ−

1

2
(m2 − iε)φ ∗ φ+ J ∗ φ+ LI [φ]

)}

= exp

{∫
dDx

(
iLI
[
δ

iδJ

])}
W0[J ], (2.9)
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where

W0[J ] =

∫
[dφ] exp

{
i

∫
dDx

(
1

2
∂µφ ∗ ∂µφ−

1

2
(m2 − iε)φ ∗ φ+ J ∗ φ

)}

=

∫
[dφ] exp

{
i

∫
dDx

(
1

2
φ ∗ (−∂2 −m2 + iε)φ+ J ∗ φ

)}
, (2.10)

LI [φ] = − g
3!
φ ∗ (φ ∗ φ). (2.11)

We have inserted a factor ε ∼ +0 to make the path integral convergent as usual. In deriving

the second line of (2.9), we have used that δ/(iδJ(x)) can be replaced with φ(x). This can

be shown as

δ

iδJ(x′)
exp

(
i

∫
dDxJ(x) ∗ φ(x)

)

=

∫
dDxδ(x′ − x) ∗x φ(x) exp

(
i

∫
dDxJ(x) ∗ φ(x)

)

=

∫
dDx

∫

p

∫

k
eip(x

′−x) ∗x eikxφ̃(k) exp

(
i

∫
dDxJ(x) ∗ φ(x)

)

=

∫
dDx

∫

p

∫

k
eα(−p+k)2

ei(−p+k)xeipx
′
φ̃(k) exp

(
i

∫
dDxJ(x) ∗ φ(x)

)

=

∫

p

∫

k
eα(p−k)2

(2π)DδD(−p+ k)eipx
′
φ̃(k) exp

(
i

∫
dDxJ(x) ∗ φ(x)

)

=

∫

p
φ̃(p)eipx

′
exp

(
i

∫
dDxJ(x) ∗ φ(x)

)

= φ(x′) exp

(
i

∫
dDxJ(x) ∗ φ(x)

)
. (2.12)

We now change the integration variable from φ(x) to φ′(x) defined by

φ(x) = φc(x) + φ′(x), (2.13)

where φc(x) is a solution to the classical free field equation,

(−∂2 −m2 + iε)φc(x) = −J(x). (2.14)

The solution is given by

φc(x) = −
∫
dDy∆F (x− y)J(y), (2.15)

where

∆F (x− y) =

∫
dDk

(2π)D
e−ik(x−y) 1

k2 −m2 + iε
. (2.16)

Then we get

W0[J ] = N exp

{
− i

2

∫
dDx

∫
dDyJ(x) ∗x ∆F (x− y)J(y)

}
, (2.17)

– 5 –
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Figure 3: One-loop Cutkosky rule in φ3 theory.

where

N =

∫
[dφ′] exp

{
i

∫
dDx

1

2
φ′ ∗ (−∂2 −m2 + iε)φ′

}
. (2.18)

Note that the factor N is independent of the current J(x).

The connected two point function of free field theory is given by

〈0|Tφ(x)φ(y)|0〉 =
δ2 lnW0[J ]

iδJ(x)iδJ(y)

∣∣∣∣
J=0

= i

∫
dDx′

∫
dDy′δD(x− x′) ∗x′ ∆F (x′ − y′)δD(y − y′)

= i

∫
dDp

(2π)D

∫
dDk

(2π)D
δD(p− k)eα(p−k)2

e−ipxeiky
1

k2 −m2 + iε

=

∫
dDp

(2π)D
i

p2 −m2 + iε
e−ip(x−y). (2.19)

Thus the propagator is the usual one,

i

p2 −m2 + iε
. (2.20)

The connected three point function is given by

〈0|Tφ(x)φ(y)φ(z)|0〉 =
δ3 lnW [J ]

iδJ(x)iδJ(y)iδJ(z)

∣∣∣∣
J=0

. (2.21)

From the tree level contribution, we obtain the Feynman rule for the three-point vertex as

−ig
3

(eαp
2

+ eαq
2

+ eαk
2
), (2.22)

where p, q, k are the external momenta.

A unitary theory will satisfy the Cutkosky rule,

2ImMab =
∑

n

ManMnb, (2.23)

where Mab is the transition matrix element between states a and b. Using the Feynman

rules (figures 1), (2), we will check the Cutkosky rule for the one-loop self-energy diagram of

the commutative nonassociative φ3 theory. The rule is diagrammatically given by figure 3.

– 6 –
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Let us compute the one-loop amplitude M in figure 3. The amplitude is given by

iM =

(−ig
3

)2 1

2

∫
dDq

(2π)D
(eαp

2
+ eαq

2
+ eα(p+q)2

)2

· i

q2 −m2 + iε

i

(p+ q)2 −m2 + iε
.

(2.24)

If α is non-zero, the momentum integration diverges exponentially in Minkowski spacetime.

This can be cured by changing the star product, which will be discussed in the following

section. In this section, however, we will stick to the star product (2.3) and compute the

amplitude by analytic continuation. One reason for this is that what diverges is actually the

real part of the one-loop amplitude, which is irrelevant to the one-loop unitarity. Another

reason is that we can obtain a definite conclusion if we adopt the star product (2.3), because

the imaginary part of the one-loop amplitude can be computed exactly in D = 3.

Let us assume α > 0 and carry out the Wick rotation of the amplitude. Then, after

combining the denominators by using the Feynman parameters, we obtain

M =
g2

18

∫
dDqE
(2π)D

(e−αp
2
E + e−αq

2
E + e−α(pE+qE)2

)2

∫ 1

0
dx

1

((qE + pE(1− x))2 + p2
Ex(1− x) +m2 − iε)2

,

(2.25)

where qE, pE are Euclidean momenta4. After carrying out the momentum shift qE+pE(1−
x)→ qE, we obtain

M =
g2

18

∫
dDqE
(2π)D

∫ 1

0
dx(e−2αp2

E (2.26)

+ e−2α(qE−pE(1−x))2
(2.27)

+ e−2α(qE+pEx)2
(2.28)

+ 2e−αp
2
Ee−α(qE−pE(1−x))2

(2.29)

+ 2e−α(qE−pE(1−x))2
e−α(qE+pEx)2

(2.30)

+ 2e−αp
2
Ee−α(qE+pEx)2

) (2.31)

· 1

(q2
E + p2

Ex(1− x) +m2 − iε)2
.

From now on, let us assume D = 3. Let us first study the contribution of the first

term (2.26). After parameterizing the three-momentum qE with the radial and angular

variables and integrating over the latter, we obtain

M1 = e2αp2 g2

36π2

∫ ∞

0
dqE

∫ 1

0
dx

q2
E

(qE +Aε)2(qE −Aε)2
, (2.32)

where

Aε =
√
p2x(1− x)−m2 + iε.

4 The signature in the Minkowski spacetime is taken as p2 = (p0)2 −PD−1
i=1 (pi)

2. After Wick rotation

to the Euclidean space, p2 = −(p0)2 −PD−1
i=1 (pi)

2 = −(pE)2.

– 7 –
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Figure 4: The contour of momentum qE

Here we have carried out the replacement (pE)2 = −p2 to go back to Minkowski spacetime.

In the region p2x(1 − x) −m2 < 0, Aε approaches a pure imaginary value in the ε → +0

limit, and the integrand in (2.32) is obviously real. However, when p2x(1−x)−m2 > 0, Aε
approaches a positive real value in the ε → +0 limit, and a careful treatment is required

for the integration over qE. In x, this range is expressed as

1/2− γ ≤ x ≤ 1/2 + γ, (2.33)

where γ =
√

p2−4m2

4p2 (> 0). Note that p2 > 4m2 must be satisfied for the imaginary part

of the amplitude to exist. In this range,

Aε ∼
√
p2x(1− x)−m2 + iε ≡ A+ iε. (2.34)

The imaginary part of M1 is given by (M1 −M∗1)/2i. As can be understood from

figure 4, the imaginary part of the amplitude is given by the contour integration of qE
around the pole qE = A. Carrying out the contour integration and the integration over x,

we obtain

2ImM1 = 2e2αp2 g2

36π2

∫ 1/2+γ

1/2−γ
dx

π

4
√
p2x(1− x)−m2

=
g2e2αp2

72
√
p2
, (2.35)

where the branch of positive values is taken for
√
p2.

The integration over qE for the second term (2.27) can be computed similarly. After

integrating over the angular variables of qE, we get

M2 =
g2

72π2

∫ ∞

0
dqE

∫ 1

0
dxe−2αp2

E(1−x)2
e−2αq2

Eq2
E

e4α(1−x)pEqE − e−4α(1−x)pEqE

4α(1 − x)pEqE

· 1

(q2
E + p2

Ex(1− x) +m2 − iε)2
.

The imaginary part can be similarly expressed as a contour integration, and we obtain

– 8 –
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2ImM2 =
g2

36π

∫ 1/2+γ

1/2−γ
dx

e2αp2(1−x)2

4α(1 − x)
√
p2

· e
−2αA2

(−8αA2 sinB + 2B cosB)

4A2
,

(2.36)

where B = 4α(1 − x)
√
p2A.

The other terms can be also computed similarly. The term (2.28) becomes

2ImM3 =
g2

36π

∫ 1/2+γ

1/2−γ
dx

e2αp2x2

4αx
√
p2

· e
−2αA2

(−8αA2 sinC + 2C cosC)

4A2
,

(2.37)

where C = 4αx
√
p2A. The term (2.29) becomes

2ImM4 =
2g2eαp

2

36π

∫ 1/2+γ

1/2−γ
dx

eαp
2(1−x)2

2α(1 − x)
√
p2

· e
−αA2

(−4αA2 sin(B/2) +B cos(B/2))

4A2
.

(2.38)

The (2.30) becomes

2ImM5 =
2g2

36π

∫ 1/2+γ

1/2−γ
dx

eαp
2(2x2−2x+1)

2α(1 − 2x)
√
p2

· e
−2αA2

(−8αA2 sinD + 2D cosD)

4A2
,

(2.39)

where D = 2α(1 − 2x)
√
p2A. Finally the term (2.31) becomes

2ImM6 =
2g2eαp

2

36π

∫ 1/2+γ

1/2−γ
dx

eαp
2x2

2αx
√
p2

· e
−αA2

(−4αA2 sin(C/2) + C cos(C/2))

4A2
.

(2.40)

Let us now integrate over x for these results (2.36)-(2.40). We change the variable x

to an angular variable ϕ,

x =
1

2
− γ cosϕ, (2.41)

where 0 ≤ ϕ ≤ π. Then A can be expressed as

A =
√
p2 γ sinϕ. (2.42)

The integration can be explicitly carried out by using the exponential integral function,

which is defined by

Ei(−z) =

∫ z

∞

e−t

t
dt. (2.43)

– 9 –
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The results are

2ImM2 =
ig2e2m2α

72 · 2
√
p2π

[
Ei(2p2α(γ2 + γe−iϕ + γ2e−2iϕ))− (ϕ→ −ϕ)

] ∣∣∣∣
π

0

, (2.44)

2ImM3 =
ig2e2m2α

72 · 2
√
p2π

[
Ei(2p2α(γ2 − γe−iϕ + γ2e−2iϕ))− (ϕ→ −ϕ)

] ∣∣∣∣
π

0

, (2.45)

2ImM4 =
2ig2eα(p2+m2)

72 · 2
√
p2π

[
Ei(p2α(γ2 + γe−iϕ + γ2e−2iϕ))− (ϕ→ −ϕ)

] ∣∣∣∣
π

0

, (2.46)

2ImM5 = − 2ig2e2m2α

72 · 2
√
p2π

[
Ei(2p2α(1 + e2iϕ))− (ϕ→ −ϕ)

] ∣∣∣∣
π

0

, (2.47)

2ImM6 =
2ig2eα(p2+m2)

72 · 2
√
p2π

[
Ei(p2α(γ2 − γe−iϕ + γ2e−2iϕ))− (ϕ→ −ϕ)

] ∣∣∣∣
π

0

. (2.48)

Let us first evaluate (2.44). We first note that

[
Ei(2p2α(γ2 + γe−iϕ + γ2e−2iϕ))− (ϕ→ −ϕ)

] ∣∣∣∣
π

0

= Ei(2p2α(γ2 + γe−iϕ + γ2e−2iϕ))

∣∣∣∣
π

−π
.

(2.49)

Let us consider

u = γ2 + γe−iϕ + γ2e−2iϕ (2.50)

in the argument of the exponential integral function in (2.49). Since 0 < γ ≤ 1
2 , the

trajectory of u in the complex plane for the interval −π ≤ ϕ ≤ π is given by a closed

contour going clockwise around the origin u = 0, as shown in figure 5. Since the exponential

integral function has a cut stretching between u = 0 and u = ∞, (2.49) can be evaluated

from the difference of the values of the exponential integral function on distinct sheets.

From the definition (2.43), we find

Ei(2p2α(γ2 + γe−iϕ + γ2e−2iϕ))

∣∣∣∣
π

−π
= −

∮
dt
e−t

t
= −2πi, (2.51)

where the closed contour of t goes counterclockwise around the origin. Thus (2.44) is

evaluated as

2ImM2 =
g2e2m2α

72
√
p2
. (2.52)

We can evaluate (2.45), (2.46), (2.48) in the same manner as above. The results are

2ImM3 =
g2e2m2α

72
√
p2
, (2.53)

2ImM4 =
2g2eα(p2+m2)

72
√
p2

, (2.54)

2ImM6 =
2g2eα(p2+m2)

72
√
p2

. (2.55)
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Figure 5: The contours of u for γ = 1
4 (left) and γ = 1

2 (right).

Figure 6: The integration contour of ϕ is deformed in the direction of positive imaginary values.

The evaluation of (2.47) requires a little care, since the exponential integral function

is singular at ϕ = π/2. This is not a physical singularity, since there is no corresponding

singularity in the original integration (2.39). In fact, it is allowed to deform the integration

contour of ϕ apart from real values. Let us deform the path in the direction of positive

imaginary values5 as in figure 6. Let us consider v1 = 1 + e2iϕ and v2 = 1 + e−2iϕ in the

argument of the first and second terms of (2.47), respectively. Then v1 does not surround

the origin, while v2 surrounds the origin clockwise as in figure 7. Thus (2.47) is evaluated

as

2ImM5 =
2g2e2m2α

72
√
p2

. (2.56)

Collecting all the contributions (2.35), (2.52)-(2.56), we obtain the imaginary part of

M as

2ImM =
g2

72
√
p2

(e2αp2
+ 4e2m2α + 4eα(p2+m2))

=
g2

72
√
p2

(eαp
2

+ 2eαm
2
)2. (2.57)

5The deformation can be in the direction of negative imaginary values. This does not change the final

result.
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Figure 7: The contours of v1 (left) and v2 (right).

On the other hand, the other side of the Cutkosky rule,
∑ |M|2, is given by

∑
|M|2 =

1

2

(
g

3

)2 ∫ dDq

(2π)D
dDl

(2π)D
(eαp

2
+ eαq

2
+ eαl

2
)2

· (2π)DδD(l + q − p)2πδ(q2 −m2)2πδ(l2 −m2).

(2.58)

Putting D = 3 and considering the center-of-mass frame p = (p, 0, 0), we get

∑
|M|2 =

g2

18

1

2π

∫
d2q

4(|~q|2 +m2)
δ(2
√
|~q|2 +m2 − p)(eαp2

+ 2eαm
2
)2

=
g2

72
√
p2

(eαp
2

+ 2eαm
2
)2, (2.59)

which agrees with (2.57). Thus we conclude that, inD = 3, the commutative nonassociative

field theory based on the product (2.3) satisfies the one-loop unitarity relation of figure 3.

We also have checked the unitarity in four dimensions in perturbation of α, and have found

that the unitarity is satisfied at least upto the seventh order of α. See the appendix for

details.

3. Nonassociative φ3 theory: quartic case

In the previous section we find the one-loop unitarity is satisfied for the commutative

nonassociative scalar field theory obtained from the product defined by (2.3). But the

real part of the one-loop amplitude has an exponential divergence in Minkowski spacetime,

which is not relevant to the one-loop unitarity but may harm the significance of the field

theory considered. In this section, we will define an improved commutative nonassociative

product, and will study the one-loop unitarity of the scalar field theory obtained from it.

The price to pay for this change is the loss of exact computation: One of the one-loop

contributions will be computed in perturbation of a nonassociative parameter α. We will

find that the one-loop unitarity holds at least to the order considered.

The new product is defined by changing the square of the differentials in (2.3) into

quartic power:

φ(x) ∗ φ(x) = eα((∂a+∂b)
2)2
φ(x+ a)φ(x+ b)|a=b=0. (3.1)
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In the momentum representation, the new star product is given by

eipx ∗ eiqx = e−α((p+q)2)
2

ei(p+q)x, (3.2)

where α > 0. It is easy to show that this product is commutative but nonassociative. It is

obviously Poincaré invariant.

In the same way as in section 2, we obtain the following Feynman rules,

propagator :
i

p2 −m2 + iε
, (3.3)

three-point vertex :
−ig

3
(e−α(p2)2

+ e−α(q2)2
+ e−α(k2)2

), (3.4)

where p, q, k are the external momenta.

As in the previous section, we will check the one-loop Cutkosky rule of figure 3 in

D = 3. The one-loop amplitude is given by

iM =

(−ig
3

)2 1

2

∫
d3q

(2π)3
(e−αp

4
+ e−αq

4
+ e−α(p+q)4

)2

· i

q2 −m2 + iε

i

(p+ q)2 −m2 + iε

=
g2

18

∫
d3q

(2π)3

∫ 1

0
dx(e−αp

4
+ e−αq

4
+ e−α(p+q)4

)2

· 1

((q + p(1− x))2 + p2x(1− x)−m2 + iε)2
, (3.5)

where p4 is the abbreviation for (p2)2. There occur no exponential divergences, and the

integration is convergent. After shifting the momentum variable, q → q − p(1 − x), we

obtain

iM =
g2

18

∫
d3q

(2π)3

∫ 1

0
dx
(
e−αp

4
+ e−α(q−p(1−x))4

+ e−α(q+px)4
)2

· 1

(q2 + p2x(1− x)−m2 + iε)2
, (3.6)

where the exponential factors can be expanded as

(
e−αp

4
+ e−α(q−p(1−x))4

+ e−α(q+px)4)2

= e−2αp4
+ e−2α(q−p(1−x))4

+ e−2α(q+px)4

+ 2e−αp
4−α(q−p(1−x))4

+ 2e−α(q−p(1−x))4−α(q+px)4
+ 2e−αp

4−α(q+px)4
. (3.7)

We will compute each contribution in the followings.

Since the first term in (3.7) does not contain the dependence on q, we obtain a result

similar to (2.35),

2ImM1 =
g2e−2αp4

72
√
p2

. (3.8)
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Next let us evaluate the second term in (3.7). Wick rotating the momenta p, q to

Euclidean ones pE , qE, and integrating over the angular variables of qE , we get

M2 =
g2√π

72
√

2α

∫ ∞

0

dqE
4π2

∫ 1

0
dx

qE
T ′

Erf(
√

2α(qE + T ′)2)− Erf(
√

2α(qE − T ′)2)

(qE +A′ε)2(qE −A′ε)2
, (3.9)

where A′ε =
√
−p2

Ex(1− x)−m2 + iε, T ′ = pE(1 − x) with an abbreviation pE =
√
p2
E,

and the definition of the error function Erf(z) is given by

Erf(z) =
2√
π

∫ z

0
e−t

2
dt. (3.10)

The integration over qE in the evaluation of the imaginary part of M2 can be carried out

in the same way as in the previous section. The integration can be rewritten as a contour

integration around the pole, and the result is

2ImM2 =
g2

72 · 2πi

∫ 1/2+γ

1/2−γ
dx

[
1

T
(e−2α(A+iT )4 − e−2α(A−iT )4

)

+
i

A
(e−2α(A+iT )4

+ e−2α(A−iT )4
)

]
, (3.11)

where the external momentum has been Wick rotated to the Minkowski one, and γ =√
(p2 − 4m2)/4p2, A =

√
p2x(1− x)−m2, T = p(1 − x) with an abbreviation p =

√
p2.

As before, p2 > 4m2 or 0 < γ ≤ 1
2 for the imaginary part of the amplitude to exist. After

the change of variable x = 1/2 − γ cosϕ, the four terms in (3.11) can be collected into a

simpler expression,

2ImM2 =
g2

72 · 2pπi

∫ 2π

0
dϕ e−2α(A+iT )4 A+ iT

T
, (3.12)

where A = pγ sinϕ, T = p/2 + pγ cosϕ. Since A + iT = ipγe−iϕ + ip/2, we carry out

further the change of variable z = e−iϕ, and get

2ImM2 =
g2

72pπi

∮

C
dze−2α(p/2+pγz)4 γz + 1/2

z + γz2 + γ

=
g2

72pπi

∮

C
dz
e−2α(p/2+pγz)4

(γz + 1/2)

γ(z − ᾱ)(z − β̄)
, (3.13)

where

ᾱ =
−1 +

√
1− 4γ2

2γ
, (3.14)

β̄ =
−1−

√
1− 4γ2

2γ
, (3.15)

and C is the counterclockwise circular path with unit radius from the origin. Since 0 <

γ ≤ 1/2, |ᾱ| < 1 and |β̄| > 1, and z = ᾱ is the only pole in the inside of the unit circle C.

Evaluating the residue of the pole at z = ᾱ, we get

2ImM2 =
g2

72p
e−2αm4

. (3.16)
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We can easily obtain the contributions from the other terms in (3.7) except the fifth

term. For example, the third term becomes the same as the second one after the change of

variables, p→ −p and 1−x→ x. The other contributions can be also computed in similar

ways. Thus we get

2ImM3 =
g2

72p
e−2αm4

, (3.17)

2ImM4 =
g2

36p
e−α(p4+m4), (3.18)

2ImM6 =
g2

36p
e−α(p4+m4). (3.19)

Finally we evaluate the contribution from the fifth term in (3.7). Wick rotating the

momenta p, q to Euclidean ones pE , qE, and carrying out the integration over the angular

coordinates of qE, we get

M5 =
g2√π

36pα1/2

∫ ∞

0

qEdqE
4π2

∫ 1

0
dxe
−α (q2E+p2Ex(1−x))2

(1−x)2+x2

· 1

(qE +A′ε)2(qE −A′ε)2
√

(1− x)2 + x2

·
[
Erf

(
α1/2[(1− x)(qE + pE(1− x))2 − x(qE − pEx)2]√

(1− x)2 + x2

)

− Erf

(
α1/2[(1− x)(qE − pE(1− x))2 − x(qE + pEx)2]√

(1− x)2 + x2

)]
. (3.20)

The evaluation of the imaginary part and the integration over qE can be carried out in the

same manner as above, and we get

2ImM5 =
g2√π
72πip

∫ 1/2+γ

1/2−γ
dx

1

A

[( √
αm2A

((1 − x)2 + x2)3/2

)
e
− αm4

(1−x)2+x2

·
{

Erf

(
α1/2[(1− x)(A+ ip(1− x))2 − x(A− ipx)2]√

(1− x)2 + x2

)

− Erf

(
α1/2[(1 − x)(A− ip(1− x))2 − x(A+ ipx)2]√

(1− x)2 + x2

)}

+ e
− αm4

(1−x)2+x2
1

√
π
√

(1− x)2 + x2

(
(1− x)(A+ ip(1− x))− x(A− ipx)√

(1− x)2 + x2
e
−α[(1−x)(A+ip(1−x))2−x(A−ipx)2]2

(1−x)2+x2

− (1− x)(A− ip(1− x))− x(A+ ipx)√
(1− x)2 + x2

e
−α[(1−x)(A−ip(1−x))2−x(A+ipx)2]2

(1−x)2+x2

)]
. (3.21)
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Carrying out the change of variable x = 1/2− cosϕ, we obtain a simpler expression,

2ImM5 =
g2√π
72πip2

∫ 2π

0
dϕ

e
−αm4

1/2+2γ2 cos2 ϕ

√
1/2 + 2γ2 cos2 ϕ[ √

αm2pγ sinϕ

1/2 + 2γ2 cos2 ϕ
Erf

(√
α(T (A+ ipT )2 − S(A− ipS)2)√

1/2 + 2γ2 cos2 ϕ

)

+
T (A+ ipT )− S(A− ipS)
√
π
√

1/2 + 2γ2 cos2 ϕ

· exp

{
− α(T (A+ ipT )2 − S(A− ipS)2)2

1/2 + 2γ2 cos2 ϕ

}]
, (3.22)

where

S =
1

2
− γ cosϕ, (3.23)

T =
1

2
+ γ cosϕ. (3.24)

We carry out further the change of variable w = e−2iϕ. Then the first term in (3.22) is

obtained as
√

2παg2m2γ

36p

∮

C

dw

2πi
e
−2αm4w

w+γ2(w+1)2
w − 1

(w + γ2(w + 1)2)3/2

· Erf

(−
√

2αp2γ(γ2w2 + (γ2 + 5/4)w + 1/4)√
w + γ2(w + 1)2

)
, (3.25)

while the second term is obtained as

g2

36p

∮

C

dw

2πi

1 + 2γ2(w + 1)

w + γ2(w + 1)2
e−

αp4

8
(1+24γ2w+16γ4w2). (3.26)

Here the contour C denotes a counterclockwise circular path with unit radius from the

origin. We have multiplied (3.25) and (3.26) by a factor of 2, because w goes around the

origin twice when ϕ varies from 0 to 2π.

The evaluation of the second contribution (3.26) is straightforward. When γ is in the

range 0 < γ ≤ 1
2 , the only pole in the unit circle is at

w =
−2γ2 − 1 +

√
1 + 4γ2

2γ2
. (3.27)

Evaluating the residue of the pole, we get

g2

36p
e−2αm4

e
−2αp2m2

(
−1+

r
2− 4m2

p2

)
. (3.28)

On the other hand, we have not succeeded in evaluating exactly the first contribu-

tion (3.25). We have computed the contribution in the perturbation of α as follows. The

error function Erf(z) has a series representation,

Erf(z) =
2√
π
e−z

2
∞∑

k=0

2kz2k+1

(2k + 1)!!
. (3.29)
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Applying this formula to (3.25), we obtain

−αg
2γ2m2p

9

∮

C

dw

2πi

(w − 1)(γ2w2 + (γ2 + 5/4)w + 1/4)

(w + γ2(w + 1)2)2
e−

αp4

8
(1+24γ2w+16γ4w2)

·
∞∑

k=0

1

(2k + 1)!!

[
4αp4γ2(γ2w2 + (γ2 + 5/4)w + 1/4)2

w + γ2(w + 1)2

]k
. (3.30)

In the unit circle C, there is only one pole at (3.27). Since the order of the pole becomes

higher in higher order terms of the series, it seems hard to obtain an exact result from the

expression (3.30). On the other hand, the series in (3.30) can be regarded as a perturbative

expansion in α. Using Mathematica, we have computed (3.30) in perturbation of α upto

the seventh order, and have found that (3.30) actually agrees with the expansion of

g2

36p
e−2αm4

[
1− e

−2αp2m2

„
−1+

r
2− 4m2

p2

«]
. (3.31)

Thus if we assume this is correct in all orders of α, adding (3.28) and (3.31), we finally

obtain

2ImM5 =
g2

36p
e−2αm4

. (3.32)

Collecting all the contributions, (3.8), (3.16)-(3.19), (3.32), the imaginary part of the

amplitude is obtained as

2ImM =
g2

72p

(
e−2αp4

+ 4e−2αm4
+ 4e−2α(p4+m4)

)

=
g2

72p

(
e−αp

4
+ 2e−αm

4
)2
. (3.33)

The other side of the Cutkosky rule,
∑ |M|2, can be computed in the similar manner

as in the preceding section, and we obtain

∑
|M|2 =

g2

72p

(
e−αp

4
+ 2e−αm

4
)2
, (3.34)

which agrees with (3.33). Thus the scalar field theory obtained from the star product (3.1)

satisfies the one-loop unitarity of figure 3.

4. Field theories on Poincaré invariant commutative associative space-

times

In this section, we will consider scalar field theories obtained from Poincaré invariant com-

mutative associative algebras. It will be shown that momentum dependence of couplings

does not appear in such cases. Therefore an algebra must violate commutativity or asso-

ciativity for scalar field theory to have non-trivial properties. This would be a physical

restatement of the mathematical Gelfand-Naimark theorem, which asserts that any asso-

ciative commutative algebra is canonically isomorphic to the algebra of functions on some

space with the usual pointwise multiplication.
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A Poincaré invariant commutative associative algebra has the general expression,

eip1x ∗ eip2x = f(p1, p2)ei(p1+p2)x, (4.1)

where f(p1, p2) is a Lorentz invariant function of two momenta p1, p2 and must satisfy the

conditions,

f(p1, p2) = f(p2, p1), (4.2)

f(p1, p2)f(p1 + p2, p3) = f(p1, p2 + p3)f(p2, p3), (4.3)

where (4.2) and (4.3) are the conditions for commutativity and associativity, respectively.

We also assume a positivity property,

f(p,−p) > 0 (4.4)

for general p. As can be seen below, this condition is required for the kinetic term of field

theory to be non-singular.

Let us consider scalar φ3 theory based on the above star product. The action is given

by

S =

∫
dDx

[
1

2
∂µφ(x) ∗ ∂µφ(x)− 1

2
m2φ(x) ∗ φ(x)− g

3!
φ(x) ∗ φ(x) ∗ φ(x)

]
. (4.5)

We define the Fourier transformation of φ(x) as

φ(x) =

∫
dDp

(2π)D
N(p)φ̃(p)e−ipx, (4.6)

where N(p) is a normalization factor, which will be determined later. Substituting the

Fourier transformation to the action, we get

S =

∫

p

1

2
N(p)N(−p)f(p,−p)(p2 −m2)φ̃(p)φ̃(−p)

− g

3!

∫

p

∫

q

∫

k
N(p)N(q)N(k)f(p, q)f(p + q, k)δD(p+ q + k)φ̃(p)φ̃(q)φ̃(k), (4.7)

where
∫
p is

∫
dDp/(2π)D.

The physics should not depend on the normalization N(p) of the momentum modes.

Therefore we can make the propagator of this theory to have the usual form i/(p2−m2+iε)

by choosing

N(p) =
1√

f(p,−p)
. (4.8)

This choice is allowed from the positivity assumption (4.4). Then the momentum depen-

dence of the three-point vertex is obtained as

f(p, q)f(p+ q,−p− q)√
f(p,−p)

√
f(q,−q)

√
f(−p− q, p+ q)

. (4.9)
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For the convenience of the following discussions, let us consider the square of (4.9),

h =
f2(p, q)f(p+ q,−p− q)

f(p,−p)f(q,−q) . (4.10)

Using the associativity (4.3), f(p, q)f(p + q,−p − q) = f(p,−p)f(q,−p − q), h can be

rewritten as

h =
f(p, q)f(q,−p− q)

f(q,−q) . (4.11)

Since f(p, q) is a Lorentz invariant function, it has the property,

f(p,−q) = f(−p, q). (4.12)

Using (4.2), (4.3), (4.11) and (4.12), we can further show

h = f(p, 0). (4.13)

On the other hand, from (4.3), we find f(p,−p)f(0, 0) = f(p,−p)f(−p, 0). Using the

positivity (4.4), we conclude

h = f(0, 0). (4.14)

Therefore h is actually a constant, and the coupling does not have momentum dependence.

The above proof can be generalized to the general coupling (∗φ)n+1 as follows. The

corresponding generalization of h is given by

hn =
f
(∑n

j=1 pj,−
∑n

j=1 pj

)∏n−1
i=1 f

2
(∑i

j=1 pj, pi+1

)

∏n
i=1 f (pi,−pi)

. (4.15)

This quantity satisfies an inductive relation,

hn =
f2(q, pn)f(q + pn,−q − pn)

f(q,−q)f(pn,−pn)
hn−1, (4.16)

where q =
∑n−1

i=1 pi. The factor in front has actually the same form as (4.10). Therefore hn
and hn−1 are related by a constant multiplication. Since we have shown h2 is a constant,

any hn is also a constant by induction. Thus we see that commutative associative scalar

field theories do not have momentum dependence of couplings.

5. Discussions and comments

We find that our commutative nonassociative field theories satisfy the one-loop unitarity

of figure 3 in the standard path integral scheme. This is in contrast with the violation of

unitarity in noncommutative field theories with space/time noncommutativity in the stan-

dard path integral scheme. However, our result is based on the explicit computations of

the one-loop self-energy diagrams of the field theories obtained from certain commutative

nonassociative algebras. Therefore it is not clear how general our result is, i.e. whether
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unitarity holds for other diagrams and other commutative nonassociative algebras. Con-

cerning this question, we point out a qualitative difference in non-locality between our field

theories and the noncommutative field theories in the following paragraph.

Noncommutative field theories defined by Moyal product (2.1) are non-local in real

directions. We can easily see this by using the momentum representation as

eipx ∗ eiqx = e−
i
2
pµθµνqνei(p+q)x

= eipµ(xµ− 1
4
θµνqν)eiqµ(xµ+ 1

4
θµνpν). (5.1)

Therefore when there is space/time noncommutativity, there exists non-locality in time,

and field theories will inevitably show some pathological behaviors such as violation of

unitarity [24]-[26]. On the other hand, our star product (2.4) can be rewritten in the form,

eipx ∗ eiqx = eα(p+q)2
ei(p+q)x

= eip·(x−iα(p+q))eiq·(x−iα(p+q)). (5.2)

One notices that the coordinates are shifted in the imaginary directions. This feature is also

true for the star product (3.2). Therefore our star products do not have the non-locality

in the real time direction, and this qualitative difference may be the essence of why our

field theories do not show the violation of unitarity, even though our products contain an

infinite number of derivatives with respect to the coordinates.

It is known that noncommutative field theories have the UV-IR mixing property [16]-

[18]. The UV-IR mixing is a phenomenon that the ultra-violet divergences appear when

external momenta approach zero. This occurs because the limit of vanishing external

momenta has similar effects as the commutative limit θµν → 0 in loop amplitudes. On

the other hand, the explicit expressions of the one-loop amplitudes (2.24), (3.5) do not

seem to have this sort of similarity between the two limits. Therefore our commutative

nonassociative field theories will be free from the UV/IR mixing.

The idea of noncommutativity of coordinates stems from the quantization of spacetime.

But how about nonassociativity? Is there any relation to quantization? Actually, it seems

that nonassociativity can lead to noncommutativity in some situations. Let us define a

right-operation R(a) for an element a of a nonassociative algebra as

R(a)b ≡ a ∗ b. (5.3)

Then one finds

[R(a), R(b)]c = a ∗ (b ∗ c)− b ∗ (a ∗ c), (5.4)

which does not vanish in general even when the nonassociative algebra is commutative.

Therefore R(a) is noncommutative in general. It would be interesting to find such effects

of noncommutativity in commutative nonassociative field theories.
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A. Unitarity in four dimensions

In this section, we check the unitarity in four dimensions in perturbation of α.

Let us consider the quadratic case (2.3). From (2.25), the amplitude is given by

M =
g2

18

∫
d4qE
(2π)4

∫ 1

0
dx
(
e−2αp2

E + e−2α(qE−pEx)2
+ e−2α(qE+pEx)2

+ 2e−αp
2
E (e−α(qE−pEx)2

+ e−α(qE+pEx)2
) + 2e−α(qE−pE(1−x))2

e−α(qE+pEx)2)

· 1

(q2
E + p2

Ex(1− x) +m2 − iε)2
.

Parameterizing the four-momentum qE with the radial and the spherical coordinates, it

becomes

M =
g2

18(2π)4

∫ ∞

0
dqEq

3
E

∫ 2π

0
dω

∫ π

0
dϕ sinϕ

∫ π

0
dθ sin2 θ

∫ 1

0
dx

(
e−2αp2

E + e−2α(q2
E+p2

Ex
2)(e4αqEpEx cos θ + e−4αqEpEx cos θ)

+ 2e−αp
2
Ee−α(q2

E+p2
Ex

2)(e2αqEpEx cos θ + e−2αqEpEx cos θ)

+ 2e−α(2q2
E+p2

E(2x2−2x+1)−2pEqE(1−2x) cos θ)
) 1

(q2
E + p2

Ex(1− x) +m2 − iε)2

=
4πg2

18(2π)4

∫ ∞

0
dqEq

3
E

∫ 1

−1
dt
√

1− t2
∫ 1

0
dx

(e−2αp2
E (A.1)

+ 2e−2α(q2
E+p2

Ex
2) cosh (4αqEpExt) (A.2)

+ 4e−αp
2
Ee−α(q2

E+p2
Ex

2) cosh (2αqEpExt) (A.3)

+ 2e−α(2q2
E+p2

E(2x2−2x+1)−2pEqE(1−2x)t)) (A.4)

· 1

(q2
E + p2

Ex(1− x) +m2 − iε)2
.

Let us calculate the first term (A.1). After integrating over the variable t and carrying

out the replacement p2
E = −p2, we obtain

M1 =
g2

144π2
e2αp2

∫ ∞

0
dqE

∫ 1

0
dx

q3
E

(q2
E − p2x(1− x) +m2 − iε)2

. (A.5)

We can evaluate the imaginary part as we have done in section 2. After carrying out the

contour integration over qE, we obtain

2ImM1 =
g2

144π
e2αp2

∫ 1/2+γ

1/2−γ
dx

=
g2

72π
e2αp2

√
p2 − 4m2

4p2
. (A.6)

This first order in α is

2ImM(1)
1 =

g2

36π
αp2

√
p2 − 4m2

4p2
. (A.7)
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Next let us calculate the second term (A.2). After integrating over the variable t and

carrying out the replacement p2
E = −p2, we obtain

M2 =
g2

36π2

∫ ∞

0
dqE

∫ 1

0
dxq3

Ee
−2α(q2

E−p2x2)J1(4α
√
p2qEx)

· 1

4α
√
p2qEx(qE +Aε)2(qE −Aε)2

, (A.8)

where Jν(z) is the Bessel function.

To obtain the imaginary part, we evaluate

2ImM2 =
g2

36π2i

∮
dqE

∫ 1/2+γ

1/2−γ
dxq3

Ee
−2α(q2

E−p2x2)J1(4α
√
p2qEx)

· 1

4α
√
p2qEx(qE +A+ iε)2(qE −A− iε)2

, (A.9)

where the contour is given by figure 4.

After carrying out the contour integration over qE , we obtain

2ImM2 =
g2

18π

∫ 1/2+γ

1/2−γ
dx

1

4
e−2α(A2−p2x2)

(
(1− 2αA2)

J1(4α
√
p2Ax)

2α
√
p2Ax

− J2(4α
√
p2Ax)

)
.

(A.10)

Carrying out Taylor expansion in α, the first order in α is

2ImM(1)
2 =

g2α

18π

∫ 1/2+γ

1/2−γ
dx

(
m2 +

1

2
p2x(−2 + 3x)

)

=
g2αm2

18π

√
p2 − 4m2

4p2
. (A.11)

In the same way, the third term (A.3) is

2ImM(1)
3 =

g2α

18π
(p2 +m2)

√
p2 − 4m2

4p2
. (A.12)

Finally let us evaluate the forth term (A.4). After integrating over the variable t and

carrying out the replacement p2
E = −p2, we obtain

M4 =
g2

36π2

∫ ∞

0
dqE

∫ 1

0
dxq3

Ee
−α(2q2

E−p2(2x2−2x+1)) ×

J1(2α
√
p2qE(1− 2x))

2α
√
p2qE(1− 2x)(qE +Aε)2(qE −Aε)2

. (A.13)

To obtain the imaginary part, we evaluate

2ImM4 =
g2

36π2i

∮
dqE

∫ 1/2+γ

1/2−γ
dxq3

Ee
−α(2q2

E−p2(2x2−2x+1))

· J1(2α
√
p2qE(1− 2x))

2α
√
p2qE(1− 2x)(qE +A+ iε)2(qE −A− iε)2

. (A.14)
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After carrying out the contour integration over qE, we obtain

2ImM4 =
g2

18π

∫ 1/2+γ

1/2−γ
dx

1

4
e−α(2A2+p2(−1+2x−2x2))

·
(

(1− 2αA2)
J1(2α

√
p2A(1− 2x))

α
√
p2A(1 − 2x)

− J2(2α
√
p2A(1 − 2x))

)
. (A.15)

Carrying out Taylor expansion in α, the first order in α is

2ImM(1)
4 =

g2α

18π

∫ 1/2+γ

1/2−γ
dx

1

4
(4m2 + p2(1− 6x+ 6x2))

=
g2α

18π
m2

√
p2 − 4m2

4p2
. (A.16)

Thus, collecting the results (A.7), (A.11), (A.12) and (A.16), the imaginary part of the

amplitude in the first order of α is

2ImM =
αg2

12π
(p2 + 2m2)

√
p2 − 4m2

4p2
. (A.17)

On the other hand, the other side of the Cutkosky rule, Σ|M|2 is given by

Σ|M|2 =
1

2

(g
3

)2
∫

d4q

(2π)4

d4l

(2π)4
(eαp

2
+ eαq

2
+ eαl

2
)2

· (2π)4δ4(l + q − p)2πδ(q2 −m2)2πδ(l2 −m2)

=
g2

18(2π)2
(eαp

2
+ 2eαm

2
)2

∫
d3q

2
√
~q2 +m2

∫
d3l

2
√
~l2 +m2

δ4(l + q − p)

=
g2

72π

√
p2 − 4m2

4p2
(eαp

2
+ 2eαm

2
)2. (A.18)

The first order of α of Σ|M|2 is

Σ|M|2(1) =
g2α

12π

√
p2 − 4m2

4p2
(p2 + 2m2). (A.19)

Thus we find that the unitarity is satisfied in the first order of α in four dimensions. We

can check the unitarity in higher orders of α in the same way, and have found that the

unitarity is satisfied at least up to the seventh order of α, using the Mathematica.
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